A preliminary framework for DNA barcoding, incorporating the multispecies coalescent.
نویسندگان
چکیده
The capacity to identify an unknown organism using the DNA sequence from a single gene has many applications. These include the development of biodiversity inventories ( Janzen et al. 2005), forensics (Meiklejohn et al. 2011), biosecurity (Armstrong and Ball 2005), and the identification of cryptic species (Smith et al. 2006). The popularity and widespread use (Teletchea 2010) of the DNA barcoding approach (Hebert et al. 2003), despite broad misgivings (e.g., Smith 2005; Will et al. 2005; Rubinoff et al. 2006), attest to this. However, one major shortcoming to the standard barcoding approach is that it assumes that gene trees and species trees are synonymous, an assumption that is known not to hold in many cases (Pamilo and Nei 1988; Funk and Omland 2003). Biological processes that violate this assumption include incomplete lineage sorting and interspecific hybridization (Funk and Omland 2003). Indeed, simulation studies indicate that the concatenation approach (in which these two processes are ignored) can lead to statistically inconsistent estimation of the species tree (Kubatko and Degnan 2007). The purpose of this article is to initiate the development of a framework for "next-gen barcoding": one that incorporates the multispecies coalescent, but does so by comparing multiple gene sequences from an unknown taxon with a database of sequences. Disciplines Medicine and Health Sciences | Social and Behavioral Sciences Publication Details Dowton, M., Meiklejohn, K., Cameron, S. L. & Wallman, J. (2014). A preliminary framework for DNA barcoding, incorporating the multispecies coalescent. Systematic Biology, 63 (4), 639-644. This journal article is available at Research Online: http://ro.uow.edu.au/smhpapers/2371
منابع مشابه
Species Identification by Bayesian Fingerprinting: A Powerful Alternative to DNA Barcoding
A number of methods have been developed to use genetic sequence data to identify and delineate species. Some methods are based on heuristics, such as DNA barcoding which is based on a sequence-distance threshold, while others use Bayesian model comparison under the multispecies coalescent model. Here we use mathematical analysis and computer simulation to demonstrate large differences in statis...
متن کاملBayesian species identification under the multispecies coalescent provides significant improvements to DNA barcoding analyses.
DNA barcoding methods use a single locus (usually the mitochondrial COI gene) to assign unidentified specimens to known species in a library based on a genetic distance threshold that distinguishes between-species divergence from within-species diversity. Recently developed species delimitation methods based on the multispecies coalescent (MSC) model offer an alternative approach to individual ...
متن کاملBayesian Inference of Reticulate Phylogenies under the Multispecies Network Coalescent
The multispecies coalescent (MSC) is a statistical framework that models how gene genealogies grow within the branches of a species tree. The field of computational phylogenetics has witnessed an explosion in the development of methods for species tree inference under MSC, owing mainly to the accumulating evidence of incomplete lineage sorting in phylogenomic analyses. However, the evolutionary...
متن کاملCoalescent-Based DNA Barcoding: Multilocus Analysis and Robustness
DNA barcoding is the assignment of individuals to species using standardized mitochondrial sequences. Nuclear data are sometimes added to the mitochondrial data to increase power. A barcoding method for analysing mitochondrial and nuclear data is developed. It is a Bayesian method based on the coalescent model. Then this method is assessed using simulated and real data. It is found that adding ...
متن کاملSTACEY: species delimitation and phylogeny estimation under the multispecies coalescent
This article describes a new package called STACEY for BEAST2 which is capable of both species delimitation and species tree estimation using DNA sequences from multiple loci. The focus in this article is on species delimitation. STACEY is based on the multispecies coalescent model, and builds on earlier software (DISSECT), which uses a ‘birth-death-collapse’ prior to deal with delimitations wi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Systematic biology
دوره 63 4 شماره
صفحات -
تاریخ انتشار 2014